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Abstract: We study reheating in a recently proposed brane “monodromy inflation” model

in which the inflaton is the position of a D4 brane on a “twisted torus”. Specifically, we

study the repeated collisions between the D4 brane and a D6 brane (on which the Standard

Model fields are assumed to be localized) at a fixed position along the monodromy direction

as the D4 brane rolls down its potential. We find that there is no trapping of the rolling D4

brane until it reaches the bottom of its potential, and that reheating is entirely described

by the last brane encounter. Previous collisions have negligible effect on the brane velocity

and hence on the reheat temperature. In the context of our setup, reheating is efficient

and the reheat temperature is therefore high.
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1. Introduction

Among the string theory constructions aiming for plausible early Universe scenarios, brane

inflation models are a popular and promising subclass (for reviews see e.g. [1]). They often

identify the scalar field φ responsible for the early inflationary expansion with the position
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of a D-brane of suitable dimensionality [or possibly the distance between several (anti-)D-

branes] in the extra, compactified dimensions. This, however, leads to a geometrical upper

bound on the field range accessible to such a stringy inflaton: At best, φ can travel over

the entire extension of the compactified dimension(s), but in most scenarios only part of

this range is actually suitable for supporting inflation. Taking into account the inflaton’s

canonical normalization, its field range was thought to correspond to “small field inflation”

(field values smaller than the Planck mass). Since the Lyth bound [2] directly relates the

distance travelled in field space to the contribution of tensor modes (gravitational waves)

to the observed fluctuations in the cosmic microwave background (CMB) temperature

maps, brane inflation scenarios have therefore been known to predict an unobservably low

contribution from tensor perturbations 1.

It turns out that this obstruction to having a large contribution to CMB anisotropies

from tensor modes is far from being a no-go theorem. As has recently been emphasized [4],

more complicated backgrounds than warped Calabi-Yau manifolds (which abound in brane

inflation models) make it possible for the inflaton field to traverse a certain geometric cycle

numerous times, adding up to a large distance in field space. The model proposed in [4]

is based on a “twisted torus” background for ten-dimensional type IIA superstring theory

and is reviewed in the following section of this paper. The inflaton field φ corresponds to

the position of a D4 brane wrapping the twisted torus numerous times.

To obtain a successful inflationary model, it is crucial to consider the exit from inflation

and the energy transfer between the inflaton and Standard Model matter fields. In Type IIA

theories, Standard Model matter must be localized on branes. In this paper, we study the

reheating process assuming that Standard Model matter is confined to a D6 brane localized

at a certain point along the twisted torus. As the D4 brane unwinds, it hits the D6 brane

numerous times. After the final intersection (after it has unwound completely), the D4

brane will come to rest intersecting the D6 in (3+1) spacetime dimensions. However, there

is the danger that the D4 brane might get trapped by the D6 at earlier intersections due

to strings stretching between them. These strings become massive as the branes separate

again, and might thus prevent a graceful exit from inflation. In this paper, we show that

this trapping does not occur. Reheating is dominated by the final intersection. We estimate

the reheat temperature after inflation and find that it is high.

Reheating in previously proposed brane inflation models has been studied in a large

number of papers. Reheating in a brane world model with bulk inflaton was studied in [5]

(see also [6]). In a brane-antibrane inflation model the reheating process was investigated

by means of the tachyon condensation process in [7] (see also [8] for a study of reheating in

a non-inflationary brane-anti brane model). A large body of work is devoted to studying

reheating in two throat brane inflation models in which the Standard Model lives in a deeper

throat than the one in which the brane-antibrane annihilation process takes place [9, 10].

Reheating through the relaxation of a throat was proposed in [11]. Our mechanism is based

on the trapping mechanism by enhanced symmetry states analyzed in [12, 13] (see also [14]

1As discussed in [3], nonlinear effects due to the primordial scalar metric fluctuations lead to tensor

modes, and a lower bound on this contribution can be derived.
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for a more recent study). Key to our analysis is the production of open string states in

brane interactions, a process studied in detail in [15]. Reheating in an earlier D6 − D4

brane inflation model was analyzed in [16]. A study of reheating in a D3 − D7 inflation

model was presented in [17].

The outline of this paper is as follows: In the following two sections we review the brane

inflation model of [4], with particular emphasis on the expressions for the potential energy

function in the two limiting regions of field space. In section 4, we derive the relevant

equations valid during the slow-roll phase, before going on to our main topic, namely the

interaction between the D4 and D6 branes during the unwinding of the former, and show

that (at least for the parameter values preferred in [4]) no trapping occurs. This is done

in section 5. In the final section we then estimate the reheat temperature.

2. The model

2.1 The IIA string background

The specific background we consider was constructed in ref. [18] and used for inflationary

model building in ref. [4]. This scenario relies on ten-dimensional type IIA string theory

with six dimensions compactified on a nilmanifold, that is, a “twisted torus”. This kind of

manifold is T-dual to type IIB string theory compactified on a torus with Neveu-Schwarz

(NS) flux. Under T-duality, the NS field becomes part of the geometry and leads to a non-

trivial fibration of the T-duality cycles over the base. To solve the supergravity equations

of motion, this background has to include Ramond-Ramond (RR) two- and four-form flux

as well as orientifold planes, but they will not be of concern to us here2.

More precisely, the six-dimensional internal manifold is a product of two twisted three-

tori. Following the notation of [18], we denote the metric of one of these twisted tori [with

coordinates (x, u1, u2)] by

ds2
tt

α′
= L2

u1
du2

1 + L2
u2

du2
2 + L2

x(dx′ + Mu1 du2)
2, (2.1)

where x′ = x − (M/2)u1u2, and M is an integer flux quantum number. At fixed u1, the

metric of eq. (2.1) describes a torus in the (x′, u2) direction. At u1 = 0, this is simply

a square torus, but moving along the u1 direction, the complex structure τ of this torus

changes from τ → τ + M as u1 → u1 + 1. The manifold is compactified by identifying

these two tori, in other words, there is a non-trivial monodromy as we go around the u1

direction. To be more precise, the manifold is compactified by making the identifications

(x, u1, u2) ∼ (x + 1, u1, u2) ,

(x, u1, u2) ∼ (x − M/2u2, u1 + 1, u2) , (2.2)

(x, u1, u2) ∼ (x + M/2u1, u1, u2 + 1) .

2See [18] for details. The setup presented in [4] is laid out in such a way that the orientifold planes do

not interfere with the motion of the D4 brane.
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This means that the coordinates (x, u1, u2) are restricted to the interval [0, 1], but with a

slight abuse of notation we will let u1 run over the whole real axis to describe multiple

revolutions along this direction.

This background admits a state which gives accelerated expansion because the negative

scalar curvature term leads to a positive contribution to the potential energy 3. Super-

symmetry is broken at a high scale, corresponding to the lowest KK scale of the geometry,

because the potential responsible for this is dictated by the curvature of the manifold. In

the parameter range of [18], we can assume that the curvature remains weak, but some of

the toroidal fibres become very small. We adopt the point of view that all moduli have

been stabilized by fluxes as well as the potential due to the non-Kähler structure of the

background. This is justified since the inflationary model building in ref. [4] was carried out

in the region where these moduli remain fixed and the only dynamical field is the inflaton

φ, whose interpretation we now discuss.

2.2 Monodromy inflation

To study inflation in this background, one can imagine to wrap a D4 brane [with its

(4+1)-dimensional worldvolume] along the u2 direction, its remaining (3+1) dimensions

filling the uncompactified dimensions of spacetime. This is not a supersymmetric setup

because the background we place the D4 in breaks supersymmetry by itself. The D4 will

aim to minimize its action, and therefore its worldvolume. As mentioned above, the area

of the (x′, u2) torus is minimized for u1 = 0, so the D4 that wraps a one-cycle inside

this torus will unwind by traversing the u1 cycle several times, until its wrapping number

has decreased to 1 and it reaches the position u1 = 0. Using a suitable renormalization

derived from the requirement of a canonic kinetic term for the inflaton, the brane position

in the u1 direction is now interpreted as the inflaton field φ. Since the nilmanifold has a

non-trivial monodromy under u1 → u1 + 1 [see eq. (2.2)], φ does not come back onto itself

after completing one cycle. It can therefore cross a large field range although the compact

coordinate u1 is restricted to lie in [0, 1]4. In ref. [4] it was shown that inflation in this

model takes place for super-Planckian field values with a potential V (φ) ∝ φ2/3, and that

N ∼ 60 e-folds of expansion can be achieved before the slow-roll conditions are violated.

However, to complete this inflationary scenario, one has to specify the mechanism of

reheating describing the transition to Standard Model cosmology. To this end, a few more

model building ingredients are necessary. In type II theories, the Standard Model is usually

constructed on the intersection of stacks of branes on a toroidal orbifold (see e.g. [19] for a

review). In type IIA, candidate branes [with at least (3+1) worldvolume dimensions] are

D4, D6 and D8-branes. D4 and D8-branes are usually disregarded as they would have to

wrap a one- or five-cycle, respectively, both of which are homologically trivial in Calabi-Yau

manifolds. The most successful minimal supersymmetric standard models (MSSM) require

several stacks of intersecting D6 branes, typically using all internal dimensions. We will

be less ambitious here and consider only a single D6 brane that is wrapped on the second

3For a large enough uplift, [18] also requires supersymmetry breaking KK monopoles (wrapped 5-branes).
4See the comment following eq. (2.2) for the use of the range of u1.
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nilmanifold5, which has a metric ds̃2
tt analogous to eq. (2.1) with a second set of coordinates

(x̃′, ũ1, ũ2). Again, this is not a supersymmetric setup, but we assume the D6 has already

minimized its worldvolume, sitting at a meta-stable equilibrium position. We can treat the

D6 as a probe in the same way we treat the D4 as a probe in this background geometry.

We choose our setup such that the D4 and the D6 overlap in three spatial directions but

are orthogonal on the internal manifold (this would preserve supersymmetry in flat space).

We therefore do not expect any tachyons to appear in the open string spectrum, even after

the D4 is wrapped on a twisted fibre. An open string stretching between the two branes

would only become tachyonic when the branes come very close to each other. At this point,

it is the local geometry that matters and the branes are mutually BPS on scales on which

the curvature of the background can be neglected. The existence of this tachyon should

therefore be insensitive to the global supersymmetry breaking by the background.

During inflation, the D4 unwraps and crosses the D6, which we choose to localize at

u1 = 0, several times. Each time, open string modes between the branes are created. As

long as the collision is non-relativistic, only unexcited massless strings are produced [20].

This will indeed turn out to be the case here, the velocity of the inflaton along the slow-roll

trajectory being extremely small. These inter-brane strings, however, acquire a mass when

the branes move apart from each other again following each collision, and therefore create

an attracting force between the D4 and the D6. This attractive force is in competition with

the force (i.e. the inflaton’s potential) that tries to unwind the D4, aiming to minimize its

worldvolume. Note that this additional potential is the main difference to the case studied

in ref. [12], where only the string-induced potential was present.

One might worry that this could lead to a trapping of the D4 on the D6 before a

sufficient amount of inflationary expansion has been achieved [12]. It turns out, however,

that the number density nχ of the produced strings at each collision is so small (owing

to its dependence nχ ∝ |φ̇|3/2, with the D4’s kinetic energy being extremely small during

inflation) that their contribution to the effective potential does not stop the inflaton from

rolling down towards the minimum at u1 = 0. Due to the monodromy in the u1 direction,

new strings are produced at each crossing, in principle allowing for an accumulative effect.

But as long as each u1 turn corresponds to several e-folds of slow-roll inflation on the

V (φ) ∝ φ2/3 potential, the earlier collisions’ string modes have already been diluted to

negligible density when the branes meet again. Only towards the end of the unwrapping

process does slow-roll break down, and the string densities of the last few collisions may

add up. We will discuss this effect in detail below.

Once the D4 has unwound completely, it oscillates around the D6, reheating it and

providing the phenomenological connection to the Universe’s subsequent evolution. Si-

multaneously, when u1 becomes small, the notion of the renormalized inflaton field φ in

terms of the coordinate u1 changes. As a consequence, during this final stage (generically

5We could also imagine replacing this nilmanifold by an ordinary toroidal orientifold without twisted

fibres. Twisting is only essential on the nilmanifold on which we want to achieve monodromy inflation.

The motivation in ref. [4] to have both the nilmanifolds twisted is to make them interchangeable under an

orbifold projection and possibly use combinations of their respective coordinates [(x′, u1, u2) and (x̃′, ũ1, ũ2)]

as candidate inflatons.
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after the previous slow-roll phase has ended) the potential is quadratic, V (φ) ∝ φ2. To

estimate the temperature of reheating in this model, we need to determine the velocity of

the inflaton when it reaches its potential minimum at u1 = 0 (corresponding to φ0 = 0)

and therefore the minimum of the D4-brane’s worldvolume.

3. Inflaton normalization and potential

”Monodromy inflation” is a large field inflation model, i.e. accelerated expansion of the

Universe proceeds while the inflaton φ moves from a large initial value (measured in Planck

units) towards smaller field values. In ref. [4] it was shown that, in order to avoid destabiliz-

ing the moduli, the inflaton field has to start below a certain geometry-imposed maximum

value φmax. Above this field value the inflaton energy density is so large that the dynamics

of the other moduli cannot be neglected. We do not discuss this restriction in detail here

and only note that it translates into φmax/MPl ≃ O(10) or less, corresponding roughly to

the same order of magnitude of turns ktot in the u1 direction.

The action for the inflaton is derived from the Dirac-Born-Infeld (DBI) world sheet

action of the D4 brane in the presence of the non-trivial background geometry

SD4 =

∫

d5ζ

(2π)4(α′)5/2
e−Φ

√

det(GMN + BMN )∂αXM∂βXN , (3.1)

where XM (ζα) are the embedding coordinates of the brane, the world sheet coordinates

being denoted by ζα (Greek indices are world sheet coordinates, capital Latin indices are

bulk spacetime coordinates). The bulk metric and bulk NS two-form are GMN and BMN ,

respectively, so that the argument of the square root gives the pullback of these fields onto

the brane worldvolume. The dilaton is denoted by Φ, and the string scale is determined

by α′ (employing the standard notation from string theory).

Taking the brane to be extended in our three spatial dimensions, uniform in the u2

direction, and located at the position u1(y) in the monodromy direction (the coordinates

y being our four-dimensional spacetime coordinates), the above action reduces to [4]

SD4 =
1

(2π)4gs(α′)2

∫

d4y
√−g4

√

(βL2
u + L2

xM2(u1)2)

(

1 − α′
(Lu)2

β
u̇2

1

)

, (3.2)

where β = Lu2
/Lu1

≡ L2
u/(Lu1

)2. Lx, Lu1
and Lu2

denote the size of the twisted torus

in the respective directions, hence β measures the ”anisotropy” between the u1 and u2

directions and Lu an average over the two. gs is the string coupling constant whose value

is set by the expectation value of the dilaton Φ, g4 is the determinant of the induced

spacetime metric, and the overdot indicates the derivative with respect to physical time.

As is apparent from (3.2), the field u1(y) is not canonically normalized. For applications

to cosmology we need to transform to the corresponding canonically normalized field φ(u1),

in terms of which the action will then be given by

SD4 =

∫

d4y
√−g4

[

1

2
φ̇2 − V (φ)

]

. (3.3)
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Expanding the action (3.2) up to two derivatives, we obtain the following form for the

potential

V (φ) =
β1/2Lu

(2π)4gsα′2

√

1 +
M2L2

x

βL2
u

u2
1(φ) . (3.4)

In the small and large field regions, the conversion between the original field u1 and

the canonically normalized field φ is of an explicit and simple form. We now list the results

(from [4]) and the corresponding potentials.

3.1 At small field values

In the regime u1 < u1,crit, where u1,crit (see ref. [4]) is given by

u1,crit ∼
√

β

M

(

L

Lx

)3/2

, L3 = L2
uLx , (3.5)

the potential takes the form

V φ<φcrit(φ) =
m2

2
φ2 , (3.6)

where the ”mass” m is given in terms of the background parameters by

m2 =
M2

α′

L4
x

L6
. (3.7)

In the small field regime, the relation between u1 and φ is linear and given by [4]

φ

MPl
=

(2π)3/2g
1/2
s L

3/2
u

β1/4L3
u1 . (3.8)

The values of φ corresponding to u1 < u1,crit are (for the parameter values chosen in [4]

which yield a successful inflationary model) much smaller than the four-dimensional Planck

mass MPl, and hence do not lie in the slow-roll regime for inflation.

3.2 At large field values

In the region u1 ≫ u1,crit, the potential takes the form

V (φ) = µ10/3φ2/3 , (3.9)

where the mass scale µ is given in terms of the background parameters by

(

µ

MPl

)10/3

=

(

3

2

)2/3 1

(2π)8/3

(

M2β

α′5M10
Pl g

2
s

)1/3
Lx

L
. (3.10)

If we now calculate the first two slow-roll parameters for the potential of eq. (3.9), we

obtain

ǫ ≡ M2
Pl

2

(

Vφ

V

)2

=
2

9

M2
Pl

φ2
,

η ≡ M2
Pl

(

Vφφ

V

)

= −ǫ . (3.11)

– 7 –



J
H
E
P
1
0
(
2
0
0
8
)
1
1
0

Hence, it follows that the slow-roll conditions ǫ, |η| < 1 both hold until the field reaches

the value φǫ given by

φǫ

MPl
=

√

2

9
. (3.12)

For the parameter values used in [4] (see appendix A), the breakdown of the slow-roll

approximation occurs in the large field range, i.e.

φcrit < φǫ , (3.13)

and we have φ > φǫ for most of the region φ ≫ φcrit. Hence, slow-roll inflation can occur

on the potential (3.9).

For completeness, let us also mention the relation between φ and u1 in the large field

regime [4]:

φ =
M1/2

6π2

LuL
1/2
x

(gsα′β)1/2
u

3/2
1 . (3.14)

4. Slow-roll regime

The effective four-dimensional action for the monodromic inflaton φ is

S = −
∫

d4y
√−g

[

R

2κ
− gµν

2
∂µφ∂νφ + V (φ)

]

, (4.1)

where κ = 1/M2
Pl, R is the 4d scalar curvature, and the potential V (φ) is given by

eq. (3.9). Assuming the standard spatially flat FLRW metric, the cosmological evolution

is then governed by the Friedmann and Klein-Gordon equations,

H2 =
1

3M2
Pl

[

φ̇2

2
+ V (φ)

]

, (4.2)

−Vφ = φ̈ + 3Hφ̇ . (4.3)

Assuming that the slow-roll conditions eqs. (3.11) hold, these equations are well approxi-

mated by

H2 ≃ 1

3M2
Pl

V (φ) , (4.4)

−Vφ ≃ 3Hφ̇ . (4.5)

It follows immediately that the Hubble parameter scales with µ and φ as

H

MPl
≃ 1√

3

(

µ

MPl

)5/3 (

φ

MPl

)1/3

. (4.6)

Likewise, combining eqs. (4.4) and (4.5) gives for the inflaton’s velocity

φ̇

M2
Pl

≃ − 2

33/2

(

µ

MPl

)5/3 (

MPl

φ

)2/3

. (4.7)
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The velocity is negative because the field rolls down the potential towards smaller φ values

(u1 decreases from its maximum value u1,in to u1 = 0 as the brane unwraps). The kinetic

energy at a given field position then is

Ekin(φ)

M4
Pl

=
2

33

(

µ

MPl

)10/3 (

MPl

φ

)4/3

, (4.8)

while at the same time, the potential energy amounts to

Epot(φ)

M4
Pl

=

(

µ

MPl

)10/3 (

φ

MPl

)2/3

. (4.9)

Comparing eqs. (4.9) and (4.8), we see that both energy contributions scale as µ10/3, but

Ekin ∝ φ−4/3 and Epot ∝ φ2/3. Therefore, roughly speaking, Epot > Ekin for super-

Planckian field values. In particular, note that Epot ≈ Ekin (which occurs when ǫ ≃ 1)

around φ/MPl ≃ O(1), in agreement with the value of φǫ from eq. (3.12).

Re-writing eq. (4.5) in terms of the number N =
∫

Hdt of e-foldings of inflation instead

of in terms of cosmic time t allows us to integrate and find N(φ) at a given field value:

N(φ) =
3

4M2
Pl

(

φ2
in − φ2

)

, (4.10)

where we assume that inflation starts at the field value φin (thus setting the constant

Nin ≡ N(φin) = 0). Inverting eq. (4.10), we find for φ along the slow-roll trajectory

φ(N) =

√

φ2
in − 4M2

Pl

3
N . (4.11)

This equation describes the field evolution until we reach φǫ. Provided that φǫ > φcrit, the

slow-roll phase is followed by a period when the potential is still given by (3.9), but the

motion is too fast to sustain inflation. Then, when the inflaton reaches φcrit, the potential

becomes quadratic as given by eq. (3.6).

5. Brane collision

We now consider the following situation: The D4 brane starts out at some initial field value

φin located on the slow-roll trajectory. During its motion down the potential it will collide

several times with the D6 brane. During the collision process, open strings connecting the

two branes will be produced. They will create a restoring force which opposes the further

motion of the D4 brane. Below we study the strength of this opposing force. We show

that, at least for the parameter values assumed in [4], the force is too weak to trap the D4

brane.

Let us follow the motion of the D4 brane around the torus in the u1 direction and

focus on the collision with the D6 which occurs at some position φ = φhit. With the slow-

roll trajectory still valid, the impact velocity φ̇hit is small, and therefore a non-relativistic

treatment of the collision suffices and only unexcited strings are produced [20]. In the

string theory picture, at the moment of collision when the branes coincide, open strings

are produced with one end attached to each brane. As the D4 moves away from the D6

again, these strings become massive and try to pull the D4 back towards φhit.

– 9 –
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5.1 Effective field theory description

At the field theory level, one can model a (non-relativistic) collision [12] by the Lagrangian

L =
1

2
∂µφ∂µφ + V (φ) +

1

2
∂µχ∂µχ −

g2
φχ

2
(φhit − φ)2 χ2 , (5.1)

which describes the coupling of the inflaton φ to a field χ that becomes massless at the

collision point. In the phenomenological picture at hand, χ stands for the lowest energy

modes of the string connecting the two branes.

The Lagrangian (5.1) is of the same type which describes the reheating at the end of

inflation in field theory models of inflation. As was discussed in that context [21 – 24], the

equations of motion which follow from (5.1) for the χ field have instabilities which lead to

χ particle production with a particle number exponentially increasing in time. Specifically,

particle production is concentrated in time intervals during which the evolution of χ is non-

adiabatic (see [24] for an in-depth discussion). As shown in [12] and [13] this can lead to

the stabilization of moduli fields (like the field φ in our case) at enhanced symmetry points.

One application of this mechanism is to moduli stabilization in string gas cosmology [25, 26]

(see [27] for a discussion of this application).

Returning to our discussion, the mass of the χ particles increases in proportion to the

distance between the two branes, i.e.

m2
χ(t) = g2

φχ (φhit − φ)2 , (5.2)

where g2
φχ is related to the string coupling constant. Thus, the time-dependent frequency

for the kth mode of the χ field is given by

ω(t) =
√

k2 + m2
χ(t) , (5.3)

and one can calculate the “adiabaticity parameter”

∣

∣

∣

∣

ω̇

ω2

∣

∣

∣

∣

≈

∣

∣

∣
φ̇
∣

∣

∣

gφχ

1

(φhit − φ)2
. (5.4)

This is greater than O(1) in the interval

|∆φ| ≤
√

|φ̇|
gφχ

, (5.5)

where φ̇ is evaluated at the collision time. Taking this velocity from eq. (4.7) (valid while

φ is on the slow-roll trajectory) gives

∣

∣

∣

∣

∆φ

MPl

∣

∣

∣

∣

≤
√

2

33/4g
1/2
φχ

(

µ

MPl

)5/6 (

MPl

φ

)1/3

. (5.6)

For the parameter values of [4], the value of this expression is much smaller than 1. It is

within this small field range that particle/string creation occurs. In particular, we expect
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this process to be instantaneous compared to the Hubble time H−1. At the speed (4.7),

the field needs a time interval

∆t H =
31/4

√

2gφχ

(

µ

MPl

)5/6 (

φ

MPl

)2/3

(5.7)

[where we have made use of eq. (4.6) to determine the Hubble parameter] to pass through

the field range (5.5). This is small compared to one (and hence the time ∆t short compared

to the Hubble scale) if the field value φ satisfies

φ

MPl
≪

(

MPl

µ

)5/4 (

2gφχ√
3

)3/4

. (5.8)

For the parameter values discussed in appendix A this is always the case for φ values

sufficiently small such that moduli stabilization is not jeopardized (see ref. [4]). Therefore

it is justified to treat the process of string creation as instantaneous while the inflaton is

on its slow-roll trajectory.

The force on the D4 brane created by the strings yields a contribution to the effective

potential which determines the motion of the D4 brane after its encounter with the D6

brane. Note, however, that unlike the example of ref. [12], our Lagrangian (5.1) already

contains a bare potential for φ [given by eq. (3.9)] before the collision. The total effective

potential Veff(φ) after the brane encounter will therefore comprise the old V (φ) as well as

the induced string contribution.

According to ref. [12], the number density of produced χ particles in a head-on brane

collision is given by

nχ =

(

gφχ|φ̇hit|
)3/2

(2π)3
, (5.9)

where φ̇hit is the field velocity upon impact. As the D4 moves past the D6, these created

particles produce a contribution to the potential for the φ field of the form

ρχ(φ) = gφχnχ (φhit − φ) . (5.10)

Assuming that we are on the slow-roll trajectory and that therefore (4.7) can be used, this

potential becomes

ρχ(φ) =
g
5/2
φχ M4

Pl

23/2π339/4

(

µ

MPl

)5/2 (

MPl

φhit

)(

φhit − φ

MPl

)

. (5.11)

It is possible that this new potential energy contribution creates a local minimum in

which the inflaton might get trapped. Our next goal is to evaluate whether the D4 comes

to a halt after its encounter with the D6 brane located at φhit.

5.2 Trapping effects

Before the D4 hits the D6, φ is moving along the slow-roll trajectory (4.11) that was

obtained from eqs. (4.4)–(4.5) with the potential (3.9). In this way, we can calculate the
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impact velocity φ̇hit and therefore the string production rate at the time of the collision:

n
(1)
χ

M3
Pl

=
23/2g

3/2
φχ

(2π)339/4

(

µ

MPl

)5/2 MPl

φhit
. (5.12)

After the brane collision, the effective potential consists of eq. (3.9) plus the contribu-

tion from the newly created strings:

Veff(φ) = µ10/3φ2/3 + gφχn(1)
χ (φhit − φ) . (5.13)

Let us now check whether the field can come to a rest before it rounds the torus and hits

the D6 brane a second time (i.e. between the values of u1,hit and u1,hit − 1). A necessary

condition for the potential (5.13) to develop a local minimum is for V ′
eff to change sign.

As the bare potential (3.9) has a monotonic V ′ > 0, we have to check whether V ′
eff < 0 is

possible. This amounts to requiring

gφχnχ >
2

3

µ10/3

φ1/3
, (5.14)

which translates into

φ

MPl
>





(2π)335/4

21/2g
5/2
φχ





3
(

µ

MPl

)5/2 (

φhit

MPl

)3

. (5.15)

For the parameter values of [4] the required field values are much larger than those in the

slow-roll region. Hence we conclude that the strings produced in a single encounter are too

weak to trap the inflaton field.

One may now worry that the buildup of strings produced in various encounters might

trap the inflaton. A second encounter will generate new strings between the branes, while

those from the first collision become heavier and heavier.6 The number density nχ of

strings is larger at later encounters because the velocity of the inflaton at the impact point

increases [see eq. (4.7)]. However, as long as the field remains in the slow-roll region,

the increase in velocity is small. At the same time, however, space is inflating and thus

the number density of the strings is decreasing exponentially. Thus, strings produced at

previous encounters have a negligible effect on the later encounters as long as the time

interval corresponding to successive encounters is longer than a Hubble expansion time.

The redshifting of the number density of strings also ensures that the correction to the

effective potential has a negligible effect on the evolution of the inflaton.

We have seen that the strings created after a single collision have a negligible effect

on the field trajectory. Thus, it is reasonable to assume that even after the first brane

encounter at φhit the slow-roll trajectory remains valid. For simplicity, let us use eq. (4.7)

all the way while φ > φǫ.
7 It is then easy to check for the parameters of [4] that no trapping

6We ignore the effect of strings reattaching to the D6 brane at the second collision, which would reduce

the attractive force between the branes.
7Note that, while eq. (4.7) should be modified after each brane collision because of the additional

potential terms created by each new generation of inter-brane strings, these strings will, if anything, slow

down the brane motion further. Hence, the field in reality would be rolling even slower than (4.7) tells us.

Since the string production rate nχ ∝ |φ̇|3/2, we are therefore overestimating the effect of string production.
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can occur while the inflaton is on the slow-roll trajectory. Correspondingly, eq. (4.10) tells

us how many e-folds are produced at each turn. At the beginning of inflation, this number is

∆N ≃ O(10). It is evident that this expansion of space dilutes all the strings created at the

first hit to the extent that they do not play a role at the second encounter. However, once

the expansion drops to ∆N < 1 per turn, the created strings may indeed accumulate. The

crucial question is whether the potential contribution (5.10) induced by them can bring the

motion of the D4 to a stop before it reaches the minimum of the original potential eq. (3.9)

at u1 = 0 (corresponding to φ0 = 0). If so, one may wonder how much energy leaks from

φ into the fields localized on the D6 brane (hence reheating them) while inflation is still

under way. We will show that even with an overestimation of the string effect its influence

is negligible.

6. Reheat temperature

In this section, we first estimate the reheat temperature at the final brane collision (u1 = 0)

ignoring the effect of string creation at previous brane encounters, and then refine this

calculation taking into account the strings created during the last few turns, which do not

get diluted any more by the inflationary expansion.

6.1 Neglecting string production

The slow-roll trajectory is valid up to φǫ, at which point the kinetic and potential energies

become equal. Therefore, we can estimate the total energy at φǫ as

Etot(φǫ)

M4
Pl

≃ 2

(

µ

MPl

)10/3 (

φǫ

MPl

)2/3

. (6.1)

Since after the breakdown of slow-roll the amount of energy which is lost to the expansion

of space is negligible [assuming that the reheating process is rapid, an assumption whose

validity is assured by the estimate (5.7)], the total energy (6.1) is approximately conserved

down to u1 = 0. At that point, no inflaton potential energy is left [the D4 having minimized

its worldvolume, see eq. (3.9)], and hence the entire Etot of eq. (6.1) is converted into

kinetic energy. Therefore, the velocity of the brane when it reaches u1 = 0 (corresponding

to φ0 = 0) is given by

|φ̇0|
M2

Pl

=

√

2Etot(φǫ)

M4
Pl

= 2

(

µ

MPl

)5/3 (

φǫ

MPl

)1/3

. (6.2)

6.1.1 Reheat temperature from single impact

To calculate the reheat temperature, let us first determine how much energy is channelled

from the φ to the χ field at the final encounter itself. To this end, we set [compare eq. (5.9)]

n(u1=0)
χ = (Tχ

rh)3 =
g
5/2
φχ |φ̇0|3/2

(2π)3
, (6.3)
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assuming that the energy released as χ particles rapidly thermalizes (otherwise it would not

make sense to talk about a temperature). Given this assumption, the reheat temperature

is

Tχ
rh =

g
5/6
φχ

2π
|φ̇0|1/2 =

g
5/6
φχ

23/4π
[Etot(φǫ)]

1/4 . (6.4)

With the estimate (6.1), this becomes

Tχ
rh

MPl
=

g
5/6
φχ√
2π

(

µ

MPl

)5/6 (

φǫ

MPl

)1/6

. (6.5)

Note, however, that this only accounts for the energy transferred into the χ field on the

first hit after the unwrapping process comes to an end. During reheating, the D4 oscillates

around the D6, gradually channelling more energy into the χ field. We can estimate the

amplitude of these oscillations from (see [12])

φosc =
4π3

g
5/2
φχ

|φ̇0|1/2 . (6.6)

We can compare this again to the region in which the particle production is effective

(compare section 5.1), leading to

∆φ

φosc
=

g2
φχ

4π3
. (6.7)

For a perturbative value of the coupling, the particle production therefore still occurs only

during a small fraction of an oscillation.

6.1.2 Reheat temperature from entire energy transfer

If the D4 brane comes eventually to a stop, all of its energy (apart from its rest mass,

which we have consistently ignored in the whole analysis) will go into particles (modulo

energy which is lost into closed string modes, e.g. bulk gravitons8). Thus, we can estimate

the final reheat temperature by simply equating the final thermal energy with the inflaton

energy at the beginning of the reheating phase, i.e. using

ρrh =
π2

30
g∗

(

T rad
rh

)4
, (6.8)

where ρrh is the energy density at the beginning of the reheating phase. Here, g∗ is the

number of spin degrees of freedom in the final bath of radiative particles. Taking the

number from Standard Model particle physics, it is a constant of O(102). With eq. (6.1),

this gives a reheat temperature of

T rad
rh =

(

60

g∗π2

)1/4 (

µ

MPl

)5/6 (

φǫ

MPl

)1/6

. (6.9)

8However, for the parameters we are using for which the Planck length is smaller than the string length,

the decay into bulk particles will be suppressed.
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We immediately see the same functional dependence on µ and φǫ as in eq. (6.5). Comparing

eq. (6.9) with this previous result, we see that in order to achieve the same total energy

transfer, the number of oscillations nosc of the D4 through the D6 can be estimated as

nosc =

(

60π2

g∗

)1/4 √
2

g
5/6
φχ

. (6.10)

6.2 Cumulative effect of wound strings

We now refine the above calculation by including the string-induced corrections. Our

argument shall be directed towards finding a lower bound on the reheat temperature. We

will therefore overestimate the contribution of the strings that are created during brane

collision. As already argued earlier, as long as each turn corresponds to several e-folds, we

can safely assume that all open string states are diluted to a negligible extent. However,

as soon as this is not true anymore, some fraction of the strings will survive and get wound

around the torus multiple times. (This is the case if we neglect the possibility that they

reattach to the D6 brane. In principle a 4-6 string can split into a 6-6 string — that would

wind exactly once — and a massless 6-4 string at the time of the next crossing between the

D4 and D6.) In consistency with overestimating the string effect, we will assume that the

point from which on strings do not get diluted completely anymore occurs at some value

of u1 = k, which is higher than where slow roll breaks down at u1 = ksr. Furthermore, we

will assume that not only a fraction of them survives, but all of them.

Then our strategy to determine the final velocity φ̇0 at u1 = 0 is the following: We use

a slow roll trajectory all the way down to u1 = ksr from which point on we assume that

no energy is lost to the expansion of space anymore. We do, however, include the strings

created between the turns u1 = k and the end of slow-roll in the potential

Veff(φsr) = µ10/3φ2/3
sr +

g
5/2
φχ

(2π)3

k
∑

i=ksr+1

v3/2(u1 = i) [φ(u1 = i) − φsr] . (6.11)

Note that here we calculate the inflaton velocity v(u1 = i) from the original trajectory (4.7),

which is consistent with our overestimate: a higher velocity corresponds to a higher string

production rate. Making use of (6.11) we obtain the inflaton velocity at the end of slow-roll

via

φ̇sr =
V ′

eff√
3Veff

MPl . (6.12)

This enters into the total energy at the point where slow-roll ends

Etot(u1 = ksr) =
1

2
φ̇sr

2
+ µ10/3φ2/3

sr +
g
5/2
φχ

(2π)3

k
∑

i=ksr+1

v3/2(u1 = i) [φ(u1 = i) − φsr] , (6.13)

which we assume to remain conserved from now on. It will mostly be converted into kinetic

energy, as the original potential vanishes at φ = 0, so the total final energy reads

Etot(φ0 = 0) =
1

2
φ̇2

0+
g
5/2
φχ

(2π)3

k
∑

i=ksr+1

v3/2(u1 = i)φ(u1 = i)+
g
5/2
φχ

(2π)3

ksr
∑

i=1

ṽ3/2(u1 = i)φ(u1 = i) ,

(6.14)
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where the last line denotes the contribution from additional strings created during the last

few revolutions when slow-roll has ended. These last terms are a bit more complicated to

calculate, as we now have to determine the velocity ṽ for u1 < ksr from energy conservation

instead of from the slow-roll trajectory. This is further complicated by the fact that below

φcrit the potential changes to m2φ2, see eq. (3.6). However, in the numerical example

we study below, it turns out that φcrit corresponds to less than one revolution in the u1

direction, so we do not have to worry about this fact at all. Also, the iteration necessary

to determine the velocities for u1 < ksr is not as messy as it seems, since in our example

ksr = 2.

Equating the energies (6.13) and (6.14) we finally arrive at the kinetic energy of the

inflaton when it reaches the minimum

Ekin(u1 = 0) =
1

2
φ̇sr

2
+ µ10/3φ2/3

sr −
g
5/2
φχ

(2π)3

k
∑

i=ksr+1

v3/2(u1 = i)φsr (6.15)

−
g
5/2
φχ

(2π)3

ksr
∑

i=1

ṽ3/2(u1 = i)φ(u1 = i) .

With this expression we can now use eqs. (6.3) or (6.8) to infer the reheat temperature

found from our refined calculation. Since we have taken into account additional energy

loss, the result in each case should be a smaller Trh than those of section 6.1. We find

Tχ
rh =

g
5/6
φχ

23/4π
[Ekin(φ0)]

1/4 and (6.16)

T rad
rh =

[

30g∗
π2

Ekin(φ0)

]1/4

, (6.17)

from the reasoning following a coupling to the χ field (section 6.1.1) or energy transfer into

radiation (section 6.1.2), respectively.

In its full generality, the calculation presented in this subsection seems rather involved.

However, in a concrete numerical example, the reasoning is much more intuitive since the

total number k of turns that qualify for undiluted string production is small. We now

turn to studying such an example to illustrate the effect of string production on the reheat

temperature in the monodromy inflation model at hand.

7. Numerical example

We illustrate the relations derived above with a numerical example using the parameter

values employed in ref. [4]. For convenience, we summarily list these parameter values

along with some useful relations in appendix A. Inserting these values, the critical u1 and

φ values from eqs. (3.5) and (3.8) become

u1,crit ≃ 0.7, φcrit = 0.1MPl . (7.1)

Therefore, the large field approximation only breaks down during the last u1 turn, and we

can safely use the corresponding potential eq. (3.9) up to that point. From eq. (3.12) it

follows that no slow-roll is possible in the region φ < φcrit with eq. (7.1).
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We set the initial u1 value to be the largest value for which it makes sense to focus on

the dynamics of the candidate inflaton field alone (see the corresponding discussion in the

first paragraph of section 3). According to the analysis in [4], this correspond to a field

value of about 10MPl. Specifically, we take the first brane collision to occur at

u1,hit = 13, corresponding to φhit ≃ 9.1MPl . (7.2)

That is, the D4 brane is initially wrapped slightly more than thirteen times along the u1

direction to ensure φin > φhit.

The breakdown of slow-roll occurs [see eq. (3.12)] at the field value

φǫ ≃ 0.5MPl , u1,ǫ ≃ 1.8 , (7.3)

and therefore only the last two u1 turns do not occur entirely in the slow-roll regime.

For the scale µ of the potential, we find from eq. (3.10) that

(

µ

MPl

)10/3

≃ 8.7 · 10−10 . (7.4)

This gives for the initial Hubble scale and velocity

Hin ≃ 3.6 · 10−5MPl, φ̇in ≃ −2.6 · 10−6M2
Pl , (7.5)

illustrating that our non-relativistic treatment of the brane collisions is well justified.

Turning to the effective description of the brane collisions, we have to specify the

coupling between the fields gφχ in addition to the parameters of appendix A. We take

gφχ ≃ 0.1 , (7.6)

unless otherwise stated.9 Then, for the first collision occurring at φhit, the interaction takes

place over a range [see eq. (5.6)]

∆φ

MPl
≃ 5.1 · 10−3 , (7.7)

and from eq. (5.7) one obtains that the interaction time is O(10−2) smaller than the Hubble

time, i.e. quasi-instantaneous.

With respect to the question whether the inflaton can get trapped, we keep gφχ unfixed

for the moment. We argued earlier that eq. (5.15) remains valid along the whole slow roll

trajectory, which means down to u1 = 2 in our case. Inserting our numerical values into

eq. (5.15) we find that trapping can occur only if

φ

MPl
>

0.3

g
15/2
φχ

. (7.8)

9This does not mean we are equating the string coupling to the coupling that describes the creation of

strings on the effective field theory level in general. We just want to assume a reasonable perturbative value

for gφχ.
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For our choice of the coupling constant gφχ = 0.1, this corresponds to a field value much

larger than the maximum field value φmax (see the beginning of section 3). If we were

to impose that the field should stop after the first collision of the two branes we would

require a coupling between φ and χ of gφχ ≈ 3. Even though the string production rate

increases towards smaller φ, for the smallest value that is still on the slow roll trajectory

(corresponding to u1 = 2) one would require gφχ ≈ 1.4 for trapping to occur. Hence for a

perturbative field coupling the D4 cannot become trapped. One could repeat this estimate

for the last two turns, which lie outside the slow roll regime, by assuming that no energy is

lost to the expansion of space anymore and that the heavy strings accumulate. However, as

we will see shortly, even if we overestimate the string effect its influence remains negligible.

7.1 Reheating neglecting string production

Let us first estimate the reheat temperature when the string production effects are ignored.

Then, considering reheating through χ from eq. (6.5) with values of φǫ and µ corresponding

to our parameters, we find

Tχ
rh ≃ 1.6 · 10−4MPl ≈ 3.9 · 1014GeV, (7.9)

which is a very high reheat temperature. If we consider the overall energy transfer into

radiation, the reheat temperature found from eq. (6.9) is (using g∗ = 100)

T rad
rh ≃ 2.4 · 10−3MPl ≈ 5.8 · 1015GeV, (7.10)

which would take about [see eq. (6.10)]

nosc ≃ 15 (7.11)

oscillations around the D6 located at u1 = 0.

7.2 Reheating with strings from brane collisions

Clearly, the previous result is an overestimate of the reheat temperature since it ignores

the energy loss due to string creation and stretching between the branes. Another way to

see this is as follows: due to the production of strings, the D4 brane will be moving slightly

slower towards the end of the inflationary phase. The slow-rolling approximation will be

valid until a smaller value of the field, and thus at the time of exit from slow-rolling the

D4 brane will carry less energy. Let us therefore now turn to the more refined calculation

of section 6.2 in our concrete numerical example.

From eq. (4.10) we can calculate how many e-folds of inflation are produced at each

u1 turn in the slow-roll regime. For example, on the first turn between u1,hit = 13 and

u1 = 12, ∆N13→12 ≃ 13 e-folds are produced. However, between u1 = 5 and u1 = 4,

this has dropped to ∆N5→4 ≈ 2, and in the following turn only one e-fold of expansion

is produced, ∆N4→3 ≈ 1. Hence, when looking for a careful reheat temperature estimate,

we cannot assume that the strings created at and after u1 = 5 are diluted to a negligible

density. Therefore we set k = 5 in the notation of section 6.2. We also know, see eq. (7.3),
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that ksr = 2 since u1 = 2 is the last turn to occur in the slow-roll regime, and it corresponds

to φsr ≃ 0.6MPl. If we work through the numerics, always considering that we are still in

the slow-roll regime when calculating velocities, we find for the total inflaton energy (6.13)

that will remain conserved

Etot(φsr ≃ 0.6MPl) ≃ 7.3 · 10−10M4
Pl . (7.12)

There is only one brane collision (at u1 = 1, corresponding to φ ≃ 0.2MPl) left outside the

slow-roll regime.10 We need to calculate the velocity ṽ(u1 = 1) from energy conservation,

i.e. from

Ekin(u1 = 1) =
1

2
φ̇(2)2 + µ10/3

(

φ(2)2/3 − φ(1)2/3
)

−
g
5/2
φχ

(2π)3

5
∑

i=3

v3/2(u1 = i) [φ(2) − φ(1)]

−
g
5/2
φχ

(2π)3
v3/2(u1 = 2) [φ(2) − φ(1)] . (7.13)

Note that at u1 = 2 we are just at the end of the slow-roll phase, so we can still obtain

v(u1 = 2) from the slow-roll trajectory. From this equation we find for the kinetic energy

at the next-to-last brane crossing

Ekin(u1 = 1) ≃ 8.7 · 10−10M4
Pl . (7.14)

This kinetic energy feeds into the calculation of the string production rate at the u1 = 1

encounter

nχ(u1 = 1) =
(gφχṽ(1))3/2

(2π)3
=

(gφχ

√
2Ekin)3/2

(2π)3
. (7.15)

Then, using eq. (6.15) we determine the final kinetic energy at u1 = 0, or φ0 = 0, respec-

tively, to be

Ekin(u1 = 0) ≃ 7.3 · 10−10M4
Pl . (7.16)

Comparing to eq. (7.12), we see that within our rounding accuracy, the entire energy in

the system present at φsr has been converted into kinetic energy at φ0 = 0. That is,

the additional potential energy drained by the attached strings is negligibly small. The

correction they induce is of the order of 0.2%. Therefore, even after the refined calculation,

the high reheat temperature estimates found above persist.

This could give rise to a potential gravitino problem in our model. However, the

background constructed in [18] breaks supersymmetry at a very high scale, the lowest KK

scale. In the case at hand, this corresponds to

mKK =
2π√

α′ Lu1

, (7.17)

10Note that we can still use the normalization and potential eqs. (3.14) and (3.9), respectively, since

u1,crit ≃ 0.7 < 1.
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as the u1 direction describes the largest extension of the torus [this follows from eqs. (A.4)

and (A.6)]. With the values from the appendix we obtain mKK ≈ 4 · 10−4 MPl, which

is about two orders of magnitude smaller than the string scale [see (A.14)]. Since the

reheating temperature is slightly larger than the scale of supersymmetry breaking, there is

a potential gravitino problem (overabundance of gravitinos produced after reheating [28]).

This is not the topic of our work. However, we would like to mention that there are various

ways to mitigate the gravitino problem. One way is to invoke a period of thermal inflation

at late times [29], another one is to make use of nonperturbative decay channels of the

gravitino [30].

8. Conclusions

Recently, it has been proposed to exploit the mechanism of monodromy to achieve a large

field range for the inflaton in string-motivated models. Traditionally, the field range had

proven to be generically small in these scenarios due to the finite size of the compactified

extra dimensions, making a sizeable contribution of tensor perturbations (gravity waves)

to the cosmological perturbation spectrum hard to obtain. Monodromy models provide a

promising ansatz to overcome this previous phenomenological ”no-go theorem” for tensor

perturbations from string theory.

We have studied the mechanism of reheating in the model proposed in ref. [4], modelling

the Standard Model by a D6 brane at a fixed position in the monodromy cycle that the

D4 brane unwraps while inflation is under way. We have shown that there is virtually no

energy transferred when the branes collide during inflation (even though these collisions

occur repeatedly), the entire reheating being produced at the last brane encounter. This

is reassuring in the sense that the additional D6 “stuck in the way” of the inflationary D4

does not make it harder to achieve the required number of e-folds. We find that the reheat

temperature comes out generically high in these models. Even for different parameter values

one would find that the string production rate is very small due to the small velocity along

the slow-roll trajectory. Only if the time between the end of inflation and the last brane

crossing becomes considerably longer, then there could be any significant string effects, due

to two reasons: first, those strings would be produced at a higher rate because of the larger

field velocity and second, they would not be diluted anymore.

We have, of course, studied a rather simplified toy model. It would be interesting to

refine our approach by studying a more realistic intersecting brane model, in which the D4

would cross a considerably higher number of branes. However, given that we found the

open string effect to be negligibly small, we do not expect our conclusions to be altered

much if the stacks of branes consist of N = 1, 2, or 3 D6 branes only (these are the numbers

needed for the SU(3)× SU(2)×U(1) gauge group of the MSSM [19]). If some of these D6

overlap with the D4 along one internal direction, we would see another interesting effect

emerge — the D4 could actually dissolve into one of the D6 (as they are not mutually

BPS in this configuration) and form a bound state with considerably lower energy than

the initial setup. In this case one would observe the usual tachyonic string modes stretched

between non-BPS branes.
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Generically one would expect warping in flux compactifications. This has been ne-

glected so far as well as the backreaction of the branes onto the geometry. For a small

number of D4 and D6 this appears to be a valid approach. However, for a large number

of D6 (they are more massive than the D4) it should be taken into consideration.

In a variant of the model of ref. [4], it has been proposed [31] to use an axion field

as the inflaton. This axion originates from the NS or RR two-form, which is integrated

over a two-cycle in the internal geometry and therefore appears as a scalar in the four-

dimensional theory. The usual shift symmetry of these fields is broken in the presence of

branes, which makes them axionic inflaton candidates. Reheating would then proceed via

the closed string sector and requires a different description than the simple field theoretic

ansatz we used.
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A. Model parameters

In this appendix, we cite important relations between background parameters along with

their default values (taken from ref. [4]), which we use whenever numerical estimates are

carried out.

A.1 Useful relations

The string length and the 4d Planck mass are related by

1

α′
=

(2π)7g2
s

L6
M2

Pl , (A.1)

where the radial modulus L is a measure of the volume of the torus we are considering

[whose coordinates are (x, u1, u2)]. We have

L3 = L2
uLx , (A.2)

and since we have two copies of this torus (with an orbifold projection), the total compact

volume is V = L6/2. Lx is the length scale in the x direction [see eq. (2.1)], and Lu is an

averaged length scale in the u1, u2 directions given by

L2
u = Lu1

Lu2
. (A.3)

We define the anisotropy parameter β via

β =
Lu2

Lu1

=
L2

u

L2
u1

=
L2

u2

L2
u

. (A.4)
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A.2 Background parameter values

The length scales can be expressed in terms of the background flux quantum numbers M

and K as (see [18])

L = cL · K1/6, (A.5)

Lx = cLx · M−1/2, (A.6)

Lu =
c
3/2
L

c
1/2
Lx

(KM)1/4 . (A.7)

The coefficients cL etc. were chosen with numerical values

cL = 1.7, cLx = 8.6,
(

c
3/2
L /c

1/2
Lx

)

≃ 0.75 . (A.8)

Let us now list the values of β and of the fluxes M,K which were used in [4] to obtain

an inflationary model with a sufficient number of e-foldings of slow-roll inflation and with

a correct normalization of the power spectrum of cosmological perturbations, values which

we use in the text for our numerical estimates:

β ≃ 0.04 (A.9)

M ≃ 1 (A.10)

K ≃ 2.2 · 106 . (A.11)

From (A.5)–(A.7) this leads to the scales

L ≃ 19.4, Lx ≃ 8.6, Lu ≃ 29.1 . (A.12)

Note that this implies in particular that Lu1
≃ 145.5 is the greatest length scale, because

β is small.

The string coupling amounts to

gs ≃ 0.1 , (A.13)

and for the ratio between the string and the Planck scale we find [see eq. (A.1)]

√
α′ MPl =

MPl

Ms
≃ 117 . (A.14)
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